If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3u^2-20u+63=0
a = -3; b = -20; c = +63;
Δ = b2-4ac
Δ = -202-4·(-3)·63
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1156}=34$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-34}{2*-3}=\frac{-14}{-6} =2+1/3 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+34}{2*-3}=\frac{54}{-6} =-9 $
| |5t+4|+5=6 | | 2.1x=2.4 | | 14q−15q−–2=–8 | | 7x1+1=4x+10 | | 7=2x=-13 | | 6x+4/8=-3x+12/3 | | 2x+1=27/x-1 | | 3x-7=8(-5x+26) | | z/16=(6z+2)/9 | | 6-(2x+1)=4 | | 2/3x-1.3333=3/4x+1.5 | | 24-0.25x=-28 | | 2h-3=-15 | | 3^(x+2)=10-3^x | | 4(x-9)-4=-40 | | |a-8|=0 | | –14=–2(5–x)+16 | | 0.45x+35=0.25+40 | | 8n-6+2n+3=n+5-2n-7 | | 2x-88=12 | | -90x+50=84x+125 | | 3x-7/8=-5x+26 | | 1/3y+1/2=1/4y+2/3 | | -136=34x | | y=90(y-125/84) | | -3x=x(-3) | | 3x²+96=36x | | -15=-9/4t | | 7p^2+7p-42=0 | | 〖2x〗^2-5x-12=0 | | |2x/3+1|=3 | | 2/5x+4/5=8/5 |